Matemática discreta Ejemplos

Convertir a notación de intervalo -3/(x^4)>0
Paso 1
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3
Simplifica .
Toca para ver más pasos...
Paso 3.1
Reescribe como .
Paso 3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.3
Más o menos es .
Paso 4
Obtén el dominio de .
Toca para ver más pasos...
Paso 4.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4.2
Resuelve
Toca para ver más pasos...
Paso 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 4.2.2
Simplifica .
Toca para ver más pasos...
Paso 4.2.2.1
Reescribe como .
Paso 4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.2.2.3
Más o menos es .
Paso 4.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 5
Usa cada raíz para crear intervalos de prueba.
Paso 6
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 6.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 6.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 6.1.2
Reemplaza con en la desigualdad original.
Paso 6.1.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 6.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 6.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 6.2.2
Reemplaza con en la desigualdad original.
Paso 6.2.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 6.3
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Falso
Falso
Falso
Paso 7
Como no hay números que estén dentro del intervalo, esta desigualdad no tiene solución.
No hay solución